

HOLLAND CIRCULAR HOTSPOT

Netherlands

Chemical Recycling in circular perspective

From vision to action: How Chemical Recycling steers the transition towards a circular and carbon neutral chemical industry

Challenges & Opportunities Willem Sederel, Chair Circular Biobased Delta

Chemical Recycling – what is it and why?

Source: Esther van den Beuken, JRC Technical Report - Environmental and economic assessment of plastic waste recycling (2023)"

Chemical Recycling – what is it and why?

LIMITS OF MECHANICAL RECYCLING :

- difficulties to handle multilayers products
- deinking / discoloration of plastics
- food contact for most polymers (PP, PE, PS)
- desodorisation of recycled plastics
- removal of forbidden substances (REACH, POP, RoHS)
- severe limitations for mixed plastics
- gradual degradation of properties at each cycle

Chemical Recycling Options

Circular Solutions	Chemical recycling	Options	Examples
Netherlands		Solvolysis	PET, PU, Nylon
		Depolymerisation	PS, PMMA
		Pyrolysis	HDPE, LDPE, PP
		Gasification	RDF, SRF (waste)
A circular economy	by Chemical or Thermal Route	Top to bottom	Top to Bottom
For plastics ets turn challenges into opportunities	Catalytic or Non-Catalytic	More Energy Less CO2 saving	Lower Feedstoc Quality needed

Chemical Recycling partnerships for upscaling in the Dutch ecosystem.

Technology provider Innovative SME	Chemical Corporate partner	CR (*)	Location CR-Plant (**)	Timing	Scale (Kt waste)
Plastic Energy (UK)	SABIC	P	Geleen	Q1 2024	20
Blue Alp	Shell	P	Moerdijk	2024	35
Pryme	Shell	P	Rotterdam	2023	40
Mura (UK)	Dow NL	H-P	Teesside	2023	20
Mura	Dow NL	H-P	Böhlen (D)	2024 (FID)	120
Fuenix Ecogy	Dow NL	Р	Weert	2023	15
Clariter	Teijin	P	Delfzijl	2024	60
Alterra	Neste	Р	Vlissingen	2025	55
Ioniqa	Indorama	s	Geleen	2020	10
Ioniqa	Koch TS	s	Several	>2024	Roll out
Cure Tech	Niaga Covestro	s	Emmen	2023	25
BioBTX/Agilyx	Teijin	с	Delfzijl	2027	50
Synova	SABIC	с	tbd	2025 (FID)	50
Synova	Trinseo	D	Tessenderlo (B)	2024	15
Gidara	BP	G	Amsterdam	2024	175
Gidara	PoR	G	Rotterdam	2025/2026	180
Enerkem	Shell	G	Rotterdam	2023/2024	360

The Dutch Eco-system and best practices for Chemical Recycling

Source: Analysis by expert team Circular Biobased Delta

Pryme Business Case: Industrial validation of scale, commissioning Q2-23

Source: Analysis by expert team Circular Biobased Delta

- Feedstock cost moved between 300-400€/t
- Energy and other operational cost moved between 310-375€/t
- Total Opex was between 600-800€/t for crude pyrolysis oil

Sales price of crude pyrolysis oil was 800-1000€/t, leaving a 200€/t margin

- Upgrading of the pyrolysis oil via hydrotreating is estimated at 400€/t
- Sales price of upgraded pyrolysis oil (naphtha quality) was 1200-1400€/t
- Price moves up and down with energy and naphtha cost
- Capex has the tendency to go up over the project timeline.

The Circular Biobased Delta eight pack How to de-risk Chemical Recycling

The Business Case	The Feedstock	The Technology	The Market
RED		Ţ.	

12: Rating the CBBD eight-pack categories

The Business Case	The Feedstock	The Technology	The Market
Capex	Volume	Due diligence	Off take agreements
Opex	Quality	Safety	Volumes & prices
Margin	Availability	Scalability	Competitive trends
ROI	Sustainability	Continuous Process	Green premium
Sensitivities	Multiple sources	TRL/IP/FTO	Time2market

The Supply Chain	The Impact	The Location	The Policy
Reliable supply	Energy intensity	Location cost factors	LT Vision and Strategy
Cost of transport	LCA (CO2+7other)	Close2feedstock/ market	Incentives for 1st of kind
Transparency	Which Benchmark	Ecosystem/ cluster	Government as partner
Long term contracts	Max Integration	Ease of permitting	R&D support
Safety storage	Avoid Lock-Ins	Skilled Labour	Active Policy Development

Risk 1: business case

Is there a sufficiently profitable Business case at scale (longer term) with realistic Investment and Operational costs (including costs for feedstock, energy, etc.)? **Risk 2: feedstock**

Can we use sustainable Feedstock at the right quality for our CR-process at scale from multiple sources? (no single sources)

Risk 3: technology

Is the Technology safe, scalable (to 100,000 t/yr), continuous, robust with stable operation, is there a realistic chance to become a low-cost producer? Is the plastic-to-plastic yield high enough?

Risk 4: market

Is there demand for the CR product at current cost and price in the Market with a green premium and acceptable time to market?

Risk 5: supply chain

Is there a transparent, sustainable Supply Chain with low CO₂ emissions and low health effects for workers, neighbours and other stakeholders?

Risk 6: environmental impact

Is there a sufficient positive Environmental Impact from the CR-process in terms of CO₂ and other emission reductions versus virgin fossil (not incineration)?

Risk 7: location

Is the Location attractive in terms of cost, logistics, eco-system, labour market, permitting and proximity to feedstock and market?

Risk 8: policy

Is there an active and supportive Policy Development to support R&D and 1st of a kind plants with effective instruments? End of waste

Corporate Commitments waste based and renewable raws -Global view

Company	Volume Commitment (t)	Timing	Scope of Commitment
BASF Borealis DOW Excention	250,000 350,000 600,000	2025 2025 2030 2036	mixed plastic waste mixed plastic waste PRS capacity (waste) mixed plastic waste
Indorama Indorama	400,000 700,000	2028 2022 2025	PET-recycle PET-recycle
Indorama Lyondell Basell Nosto	25% feedstock 2.000,000	2030 2030 2030	PET-recycle Recover, Revive, Renew
SABIC	200,000 1,000,000	2025 2030 2030	Trucircle Trucircle (mech, circular, bio)
Shell Unilever	1.000,000	2025 2025	mixed waste 50% virgin plastic reduction

Global plastic waste development and growth of MR & CR (2020 - 2060)

Source: Analysis by expert team Circular Biobased Delta

Renewable and circular carbon development for plastics production

Source: Analysis by expert team Circular Biobased Delta

Concluding Remarks

Chemical Recycling in circular perspective

From vision to action: How Chemical Recycling steers the transition towards a circular and carbon neutral chemical industry

Valuable and unique points

- Dimensions as upscaling & innovation, financing, environmental aspects and policies needed
- More than 20 best practices from the Netherlands, showing the real life and transformative application of CR
- Toolboxes and strategic approaches that serve as blue prints to implement effective and sustainable initiatives for CR

Link: https://hollandcircularhotspot.nl/publications/

HOLLAND CIRCULAR HOTSPOT

HOLLAND CIRCULAR HOTSPOT

Grenzeloos Circulair High-purity chemicals from plastic waste

Jasper Munier Business Development Director Northwest Europe

November 14th

Chemical industry: EU's third largest emitter of CO₂

Source: https://unece.org/media/press/372890

The elephant in the room: feedstock

Consumption of Embedded Carbon in the Global Chemical Industry

Total: 710 Mt embedded C/yr

(4% of the Entire Carbon Demand, incl. Energy and Food) Reference Years: **2015–2022**

- Fossil-based: 640 Mt embedded C/yr (91%)
- Bio-based: 41 Mt embedded C/yr (6%)
- Recycling: 24 Mt embedded C/yr (3%)
- CO₂-based: 0.2 Mt embedded C/yr (<0.1%)</p>

Main Sources: Updated data using methodology based on Piotrowski et al. 2015, Levi and Cullen 2018, Plastics Europe 2022b, Skoczinski et al. 2022, The Fibre Year Consulting 2022, ETRMA 2021

Of all the plastic waste, only 15% is used as raw material in the EU

The rest is being landfilled or burned as fuel

29.500.000 ton

Source: Plastics Europe Market Research Group (PEMRG) / Conversio Market & Strategy GmbH. Estimated data Image: Ahmed Areef / Alamy Stock

Sclanter

over 1,000 industrial and consumer applications

High-quality green alternatives to crude oilbased petrochemicals

Solventra®

\$3.4B market 4.5% CAGR

Oilter®

\$5B market 2.5% CAGR

- Paint and ink
- Pesticides
- Polishing products
- Lubricants
- Cosmetics
- Personal care products

Clariwax®

\$5.4B market 3.9% CAGR

- Candles
- Fabric softeners
- Coating for food packaging

Sclariter 22

Ensuring Pure Feedstock for Chemical Recycling

Market demand

Implement strict policies on recycled content for chemical products (ESPR)

Collection

Standardize collection processes to minimize contamination throughout Europe

Sorting

ETS

Invest in advanced sorting technologies for effective separation

Use ETS to incentivize recycled feedstock prioritization

Let's connect! Jasper.Munier@clariter.com

HOLLAND CIRCULAR HOTSPOT

MARKING CIRCULAR CHEMISTRY POSSIBLE

Passion for Circular Chemistry

Tijmen Vries

BioBTX

November 2023

From Mixed Plastic Waste....

MIXED PLASTIC WASTE

To Direct Drop-in Chemicals

BIOBTX PRODUCT COMPOSITION

HOLLAND CIRCULAR HOTSPOT

Grenzeloos Circulair High-purity chemicals from plastic waste

Jasper Munier Business Development Director Northwest Europe

November 14th

Chemical industry: EU's third largest emitter of CO₂

Source: https://unece.org/media/press/372890

The elephant in the room: feedstock

Consumption of Embedded Carbon in the Global Chemical Industry

Total: 710 Mt embedded C/yr

(4% of the Entire Carbon Demand, incl. Energy and Food) Reference Years: **2015–2022**

- Fossil-based: 640 Mt embedded C/yr (91%)
- Bio-based: 41 Mt embedded C/yr (6%)
- Recycling: 24 Mt embedded C/yr (3%)
- CO₂-based: 0.2 Mt embedded C/yr (<0.1%)</p>

Main Sources: Updated data using methodology based on Piotrowski et al. 2015, Levi and Cullen 2018, Plastics Europe 2022b, Skoczinski et al. 2022, The Fibre Year Consulting 2022, ETRMA 2021

Of all the plastic waste, only 15% is used as raw material in the EU

The rest is being landfilled or burned as fuel

29.500.000 ton

🖕 **5 24.900.000 ton**

Source: Plastics Europe Market Research Group (PEMRG) / Conversio Market & Strategy GmbH. Estimated data Image: Ahmed Areef / Alamy Stock

Resource efficiency

Most desirable

Confidentiality Notice: This document is confidential and contains proprietary information and intellectual property of Clariter. Neither this document nor any of the information contained herein may be reproduced or disclosed under any circumstances without the express written permission of Clariter. Please be aware that disclosure, copying, distribution or use of this document and the information contained therein is strictly prohibited.

Proprietary high-yield chemical upcycling

A patented process that takes a wide range of plastic types and converts low-value plastic waste into high-value products, with ~85% yield.

entiality Notice: This document is confidential and contains proprietary information and intellectual property of Clariter. Neither this document nor any of the information contained herein may be reproduced or disclosed under any circumstances without the express written permission of Clariter. Please sure, copying, distribution or use of this document and the information contained therein is strictly prohibited

over 1,000 industrial and consumer applications

High-quality green alternatives to crude oilbased petrochemicals

Solventra®

\$3.4B market 4.5% CAGR

Oilter®

\$5B market 2.5% CAGR

- Paint and ink
- Pesticides
- Polishing products
- Lubricants
- Cosmetics
- Personal care products

Clariwax®

\$5.4B market 3.9% CAGR

- Candles
- Fabric softeners
- Coating for food packaging

oclariter 7

Ensuring Pure Feedstock for Chemical Recycling

Market demand

Implement strict policies on recycled content for chemical products (ESPR)

Collection

Standardize collection processes to minimize contamination throughout Europe

Sorting

ETS

Invest in advanced sorting technologies for effective separation

Use ETS to incentivize recycled feedstock prioritization

Let's connect! Jasper.Munier@clariter.com

MARKING CIRCULAR CHEMISTRY POSSIBLE

Passion for Circular Chemistry

Tijmen Vries

BioBTX

November 2023

From Mixed Plastic Waste....

MIXED PLASTIC WASTE

To Direct Drop-in Chemicals

BIOBTX PRODUCT COMPOSITION

Netherlands

Chemical Recycling in circular perspective

From vision to action: How Chemical Recycling steers the transition towards a circular and carbon neutral chemical industry

Challenges & Opportunities Willem Sederel, Chair Circular Biobased Delta

Chemical Recycling – what is it and why?

Source: Esther van den Beuken, JRC Technical Report - Environmental and economic assessment of plastic waste recycling (2023)"

Chemical Recycling – what is it and why?

LIMITS OF MECHANICAL RECYCLING :

- difficulties to handle multilayers products
- deinking / discoloration of plastics
- food contact for most polymers (PP, PE, PS)
- desodorisation of recycled plastics
- removal of forbidden substances (REACH, POP, RoHS)
- severe limitations for mixed plastics
- gradual degradation of properties at each cycle

Chemical Recycling Options

Circular Solutions	Chemical recycling	Options	Examples
Netherlands		Solvolysis	PET, PU, Nylon
		Depolymerisation	PS, PMMA
		Pyrolysis	HDPE, LDPE, PP
		Gasification	RDF, SRF (waste)
A circular economy	by Chemical or Thermal Route	Top to bottom	Top to Bottom
For plastics ets turn challenges into opportunities	Catalytic or Non-Catalytic	More Energy Less CO2 saving	Lower Feedstoc Quality needed

Chemical Recycling partnerships for upscaling in the Dutch ecosystem.

Technology provider Innovative SME	Chemical Corporate partner	CR (*)	Location CR-Plant (**)	Timing	Scale (Kt waste)
Plastic Energy (UK)	SABIC	P	Geleen	Q1 2024	20
Blue Alp	Shell	P	Moerdijk	2024	35
Pryme	Shell	P	Rotterdam	2023	40
Mura (UK)	Dow NL	H-P	Teesside	2023	20
Mura	Dow NL	H-P	Böhlen (D)	2024 (FID)	120
Fuenix Ecogy	Dow NL	Р	Weert	2023	15
Clariter	Teijin	P	Delfzijl	2024	60
Alterra	Neste	Р	Vlissingen	2025	55
Ioniqa	Indorama	s	Geleen	2020	10
Ioniqa	Koch TS	s	Several	>2024	Roll out
Cure Tech	Niaga Covestro	s	Emmen	2023	25
BioBTX/Agilyx	Teijin	с	Delfzijl	2027	50
Synova	SABIC	с	tbd	2025 (FID)	50
Synova	Trinseo	D	Tessenderlo (B)	2024	15
Gidara	BP	G	Amsterdam	2024	175
Gidara	PoR	G	Rotterdam	2025/2026	180
Enerkem	Shell	G	Rotterdam	2023/2024	360

The Dutch Eco-system and best practices for Chemical Recycling

Source: Analysis by expert team Circular Biobased Delta

Pryme Business Case: Industrial validation of scale, commissioning Q2-23

Source: Analysis by expert team Circular Biobased Delta

- Feedstock cost moved between 300-400€/t
- Energy and other operational cost moved between 310-375€/t
- Total Opex was between 600-800€/t for crude pyrolysis oil

Sales price of crude pyrolysis oil was 800-1000€/t, leaving a 200€/t margin

- Upgrading of the pyrolysis oil via hydrotreating is estimated at 400€/t
- Sales price of upgraded pyrolysis oil (naphtha quality) was 1200-1400€/t
- Price moves up and down with energy and naphtha cost
- Capex has the tendency to go up over the project timeline.

The Circular Biobased Delta eight pack How to de-risk Chemical Recycling

The Business Case	The Feedstock	The Technology	The Market
RED		Ţ.	

12: Rating the CBBD eight-pack categories

The Business Case	The Feedstock	The Technology	The Market
Capex	Volume	Due diligence	Off take agreements
Opex	Quality	Safety	Volumes & prices
Margin	Availability	Scalability	Competitive trends
ROI	Sustainability	Continuous Process	Green premium
Sensitivities	Multiple sources	TRL/IP/FTO	Time2market

The Supply Chain	The Impact	The Location	The Policy
Reliable supply	Energy intensity	Location cost factors	LT Vision and Strategy
Cost of transport	LCA (CO2+7other)	Close2feedstock/ market	Incentives for 1st of kind
Transparency	Which Benchmark	Ecosystem/ cluster	Government as partner
Long term contracts	Max Integration	Ease of permitting	R&D support
Safety storage	Avoid Lock-Ins	Skilled Labour	Active Policy Development

Risk 1: business case

Is there a sufficiently profitable Business case at scale (longer term) with realistic Investment and Operational costs (including costs for feedstock, energy, etc.)? **Risk 2: feedstock**

Can we use sustainable Feedstock at the right quality for our CR-process at scale from multiple sources? (no single sources)

Risk 3: technology

Is the Technology safe, scalable (to 100,000 t/yr), continuous, robust with stable operation, is there a realistic chance to become a low-cost producer? Is the plastic-to-plastic yield high enough?

Risk 4: market

Is there demand for the CR product at current cost and price in the Market with a green premium and acceptable time to market?

Risk 5: supply chain

Is there a transparent, sustainable Supply Chain with low CO₂ emissions and low health effects for workers, neighbours and other stakeholders?

Risk 6: environmental impact

Is there a sufficient positive Environmental Impact from the CR-process in terms of CO₂ and other emission reductions versus virgin fossil (not incineration)?

Risk 7: location

Is the Location attractive in terms of cost, logistics, eco-system, labour market, permitting and proximity to feedstock and market?

Risk 8: policy

Is there an active and supportive Policy Development to support R&D and 1st of a kind plants with effective instruments? End of waste

Corporate Commitments waste based and renewable raws -Global view

Company	Volume Commitment (t)	Timing	Scope of Commitment
BASF Borealis DOW Excention	250,000 350,000 600,000	2025 2025 2030 2036	mixed plastic waste mixed plastic waste PRS capacity (waste) mixed plastic waste
Indorama Indorama	400,000 700,000	2028 2022 2025	PET-recycle PET-recycle
Indorama Lyondell Basell Nosto	25% feedstock 2.000,000	2030 2030 2030	PET-recycle Recover, Revive, Renew
SABIC	200,000 1,000,000	2025 2030 2030	Trucircle Trucircle (mech, circular, bio)
Shell Unilever	1.000,000	2025 2025	mixed waste 50% virgin plastic reduction

Global plastic waste development and growth of MR & CR (2020 - 2060)

Source: Analysis by expert team Circular Biobased Delta

Renewable and circular carbon development for plastics production

Source: Analysis by expert team Circular Biobased Delta

Concluding Remarks

Chemical Recycling in circular perspective

From vision to action: How Chemical Recycling steers the transition towards a circular and carbon neutral chemical industry

Valuable and unique points

- Dimensions as upscaling & innovation, financing, environmental aspects and policies needed
- More than 20 best practices from the Netherlands, showing the real life and transformative application of CR
- Toolboxes and strategic approaches that serve as blue prints to implement effective and sustainable initiatives for CR

Link: https://hollandcircularhotspot.nl/publications/